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ABSTRACT

In 1961, Sperling linearized and regularized the differential equations of motion

of the two-body problem by changing the independent variable from time to fictitious
dt

time by Sundman's transformation (r = _-) and by embedding the two-body energy

integral and the Laplace vector. In 1968, Burdet developed a perturbation theory

which was uniformly valid for all types of orbits using a variation of parameters

approach on the elements which appeared in Sperling's equations for the two-body

solution. In 1973, Bond and Hanssen improved Burdet's set of differential equations

by embedding the total energy (which is a constant when the potential function is

explicitly dependent upon time.) The Jacobian constant was used as an dement to

replace the total energy in a reformulation of the differential equations of motion. In
the process, another element which is proportional to a component of the angular
momentum was introduced.

Recently trajectories computed during numerical studies of atmospheric entry from cir-

cular orbits and low thrust beginning in near-circular orbits exhibited numerical insta-

bility when solved by the method of Bond and Gottlieb (1989) for long time intervals.

It was found that this instability was due to secular terms which appear on the right-

hand sides of the differential equations of some of the elements. In this paper, this

instability is removed by the introduction of another vector integral called the delta
integral (which replaces the Laplace Vector) and another scalar integral which remove

the secular terms. The introduction of these integ/als requires a new derivation of the

differential equations for most of the elements. For this rederivation, the Lagrange

method of variation of parameters is used making the development more concise.

Numerical examples of this improvement will be presented.

This work was performed for NASA-JSC Houston, Texas under Contract No. NAS9-
17885.
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1.0 Summary

In 1961 Sperling linearized and regularized the differential equations of motion of the two-body prob-

lem by changing the independent variable from time to fictitious time by Sundman's transformation

(r = as) and by embedding the two-body energy integral and the Laplace vector which is also an
ds

integral of the motion into the Newtonian form of the differential equations of motion. The solution of

Sperling's differential equations was uniformly valid for all types of orbits. In 1968, Burdet developed

a perturbation theory using a variation of parameters approach on the 14 elements which appeared in

the two-body solution. In 1973, Bond and Hanssen improved Burdet's set of differential equations by
using the total energy of the perturbed system as a parameter instead of the two-body energy and by

reducing the number of elements to 13. In 1989 Bond and Gottlieb embedded the Jacobian integral,

which is a constant when the potential function is explicitly dependent upon time as well as position in

the Newtonian equations. The Jacobian constant was used as an element to replace the total energy in

a reformulation of the differential equations of motion. In this process, another element which is pro-

portional to a component of the angular momentum is introduced. This brought the total number of

elements back to 14. In this paper the Laplace vector is replaced by another vector integral as well as

another scalar integral which remove small secular terms which appear in the differential equations for
some of the elements.

2.0 Introduction

The non-linear differential equations of motion for the cartesian coordinates of the two-body problem

can be regularized and linearized by the three-step procedure of changing the independent variable form

time (t) to fictitious time (s) by the application of the Sundman transformation, embedding the Laplace

integral and embedding the Jacobian integral.

By regularization we mean the removal of all singularities, and by linearization we mean that the

differential equations for the cartesian coordinates are transformed to harmonic oscillators. Previously,
regularization and linearization were done by Burdet (1968) by embedding the two-body energy which

is constant only for the two-body problem and by Bond and Hanssen (1973) by embedding the total

energy which is a constant when the two-body system is perturbed by a conservative potential (function

of position only). In Bond and Gottlieb (1989), the Jacobian integral, which is a constant for the case

of the two-body system perturbed by a potential function that is explicitly dependent on time as well as

position, was embedded in the Newtonian equations. All three of these approaches reduce to the same

system of equations in the absence of perturbations.

Recent numerical studies on atmospheric entry from near circular orbits and on low thrust in near circu-

lar orbits exhibit numerical instability when solved by the method of Bond and Gottlieb (1989) for long

time intervals. These two cases are similar since both have persistent, tangential, non-conservative per-

turbations. It was found that this instability was due to secular terms which appear on the right hand

sides of the differential equations of some of the elements. In this paper this instability is removed by

the introduction of another vector integral of the motion and another scalar integral which remove the

secular terms. The introduction of these integrals which were included by Burdet (1968) require a new

derivation of the differential equations for most of the elements. For this rederivation the Lagrange

method of variation of parameters is used making the development more concise.

2.1 The Differential Equations of Motion in the Fictitious Time

The differential equation for perturbed two-body motion is

/: + r_3r = F (2.1)

where r_ is the position vector of one of the masses with respect to the other in cartesian coordinates

and r is the magnitude of r and ( " ) = d(_ Also the gravitational constant is
-- dl "
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Is= G (M + m) (2.2)

where G istheuniversalgravitationalconstantand M and m arethemassesof thetwo bodies.The

quantityF_istheperturbationwhichcan beexpressedby,

= P - h_-V(L, t) (2.3)F

where V( r, t) is the potential due to perturbing masses and P__is any perturbative acceleration which is
not derived from a potential.

Equation (2.1) can be linearized (except for the perturbation) in three steps:

STEP (1) Change the independent variable from time (t) to fictitious time (s) according to the transfor-
mation

dt
= r (2.4)

ds

The derivatives of r with respect to t become

f = r'/r (2.5)

where ()'= dO and
ds"

where

F = r" / r2- r'r" I r 3 (2.6)

• =r • /• (2.7)

STEP (2) Embed the integral called the Laplace vector (a constant when F=O)

which becomes

e_.--

when the new independent variable s

STEP (3) Embed the energy integral

U k =

which becomes

(2.8)

1_[f•' ._/1<- [•'. •1,.}- ,./• (2.9)
lit z LL- -- -

is used.

(a constant when F=O)

- i • i (2.1o)

(2.11)= 2-9--- l_.r', r'Uk
r r z

when the new independent variable is used. Note that

cq =-2 hk

where h, is the two-lxxly or Keplerian energy.

(2.12)

Using thesethrcesteps in order, equation (2.1) becomes

(2.13)

By takingthedot productof equation

• " + a,r = - _ + r_

which is the differential equation for the position vector r.
(2.13) with the position vector r we obtain

r"+ akr =ix+rr.F (2.14)

which is the differential equation for the distance r. We now change from the energy integral ak to
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theJacobianintegral_ts (Bond and Gottlieb (1989)) which is given by

¢_s = ak + 2_ - 2V(r, t) (2.15)

where ¢_ is called the axial element and is defined by

= ¢o ._ x/) (2.16)

The vector __ is the constant rotational rate of the central attracting body or orbital rate of a third body
giving rise to the perturbing potential V(r, t). In Section 4.0 it will be shown that as ---constant
when/P/= 0 and that ¢_= constant when/_o,,q= 0. Solving equation (2.15) for oct and substituting into
equations (2.13) and (2,14) we obtain

r" + asr = - lag_+ r2_F + 2(¢_- V( r, t))r - - I__ + Q (2.17)

and

. I
r +asr =ll+rr .F +2(a-V(r_.,t))r El.t+ rQ .r (2.18)

Note that all of the perturbation terms have been moved to the right side in equation (2.17) and (2.18).

Equation (2.17) and (2.18) are coupled only through the perturbation terms. We will refer to equation
(2.17) as the _ differential equation since its solution provides position and velocity. We will refer
to equation (2.18) along with equation (2.4) as the tempo_l differential equations since their solutions
provide time. Note that when there are no perturbations (that is/F/= 0 and/_o_/= 0) then _¢ehave the
two-body differential equations

_r + otsg = - _ (2.19)

and

r" + as r = 1_ (2.20)

and the Jacobi constant and Keplerian energy become the same

3.0 Two Body Solution

The differential equation of motion for the two-body problem in the fictitious time was shown in the
previous section to be

H

r + as_.r = - I__ (3.1)

The solution of (3.1) in terms of the Stumpff functions of Appendix B is

r = r_.oco + r_sc 1 - I__s2c2 (3.2)

where 5 and r_.oare the initial values of r and r', and the Stumpff functions are ct = ct(assZ). This
can be verified by direct substitution of (3.2) into (3.1) and using the derivatives of the Stumpff func-
tions

i

Co =- _.tSC 1

sc _ + c _= co (3.3)

sc_ + 2c2 = cl

The first derivative of (3.2) which is the "velocity" in the fictitious time is
s

r = - (asr_o + I_..)sc ! + _Co (3.4)

In place of tat which is a constant of the motion we define the constant "delta vector"
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__=- _5 -lae_
Now using the Stumpff function identity

Co + (1j$2C2 t l

and equation (3.5) and (3.2) we obtain

• $2C2• =_, +r_osc 1 + 8

similarly equation (3.4) becomes

r"= r co + 8.scl

(3.5)

(3.6)

(3.7)

(3.8)

The differential equation of motion for the distance r was shown in the previous section to be

r" + al r = p. (3.9)

The solution of equation (3.9) is similar to that for (3.1). In terms of Stumpff functions the distance is

• = roc o + rose I + I,tS2C2 (3,10)

and its derivative is

Now define the constant

r'= (_t - ro aj)sc I + ric o (3.11)

y= _t -roas (3.12)

which we substitute for l.t in equation (3.10) along with the identity of equation (3.6) to obtain

• = ro + roscl + ys2c_ (3.13)

Similarly equation (3.1) becomes

r'= roe, + yscl (3.14)

Now substitute equation (3.13) for • in the independent variable transformation, equation (2.4), to
obtain

dt = rods + r_sctds + ¥s2c2 ds (3.15)

Now use the integration formula

f s" c,, ds = $m+lcm+!

which is from Appendix B to obtain the equation for time (Kepler's equation),

t = to + ros + r_s2c2 + ys3c3 (3.16)

where to is the initial time.

The integration constants which were introduced in this section are _,, r_, ro, ro, to. The new constant
_8simply replaces the Laplace vector which is a constant of two-body motion through the definition
(3.5). Similarly we note that the constant y replaces the gravitational constant (equation (3.12)). The

introduction of the constants 5 and y was done by Burdet (1968). This fact was noted by Bond and
Hanssen (1973). The Jacobian element aj is the same as the two-body energy parameter ak in the
unperturbed case is also a constant of the motion. In addition we have the axial element a which is
also a constant of the motion (see equation 2.16). This is a total of 15 constants of the motion.

The constants r_.o,_ and 8 will be treated as orbital elements associated with the spatial differential
equation (2.17) and ro, ro, y, to will be treated as orbital elements associated with the temporal
differential equations (2.4) and (2.18).
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4.0TheDifferential Ecluations For The Elements

When perturbations arc present the elements arc no longer constant. First we derive the differential

equation for the axial element o. Differentiate equation (2.16) with respect to time and substitute equa-
tion (2.1) and (2.3) to obtain

r I: 1
now use equation (2.4) to change to fictitious time

o_ I:,- rto. r x - (4.2)

Clearly a = constant when/co/= 0. Now we derive the differential equation for the Jacobian element
_.t. Differentiate equation (2.15) with respect to time to obtain

From equations (2.10) and (2. I)

and from Bond and Mulcihy (1988) also Bond and Gottlieb (1989)

-_tV( r,t)=-O_." r X _rV( r,t)

and from equation (4.1) the expression for (k, becomes

_¢_ = 2(-t: + m x r). P (4.3)

Now use equation (2.4) to change to fictitious time

ot.1= 2(-r' + r_ x r). P (4.4)

Note that (zj = constant when/P/= 0. The Jacobian constant ctj will be treated as an orbital element
for both the spatial and temporal equations since % appears in the two-body equations (2.19) and
(2.20). Even though we have already obtained the differential equation for % (equation (4.4)) we must
include it in the variation of parameters procedures of the spatial and temporal equations. The axial
element cr appears only as a perturbation in equations (2.17) and (2.18). We have also obtained the

differential equation for o (equation (4.2)). We will include o in the variation of parameters procedure
for convenience and completeness.

Even though the Laplace vector will be eliminated as an element we will need the derivative of the

Laplace vector as a perturbation. This derivative as found by differentiating equation (2.8) will respect
to time, then using equation (2.1) to eliminate _, and finally using equation (2.4) to obtain

I.te_"= 2 _'. F)r - _. F)r'- _-r')F (4.4a)

4...._1_ Elements

Now we apply the variation of parameters method of Lagrange to equations (2.17), (4.2) and (4.4).
Define

x 1 =r
w

xj=_r

x3 = -ajr - lae_= -x_l - ge (4.5)
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X4=O

x5=aj

Now differentiate equations (4.5) and use (2.17), (4.2) and (4.4) to obtain

x_ = x2

x2 = x3 + 2 = x3 + __a2

x_ = - xsx_2- (otjr + laB_')= - xsx_2 + G3 (4.6)

X4 = (Y' = G4

Where G l= 0.Equations(4.6)can be separatedintounperturbed(i.e.,two-bodyorKeplerian)and per-

turbedparts,thatisintotheform ofx"= F + G, making them suitableforLagrange'svariationof

parametersmethodasgivenby AppendixA. Inthisform equation(4.6)becomes

x_.1

x_2

x3

X4

X5

where G1, ____.2,G3, G4, G5 are defined from

the new dependent variables, is defined as

where

and of course 6 and otj

differential equation for c, has the form,

_2 _Cl

x3 G__2

= -x_2 + G_.3 (4.7)

0 G4

0 Gs

equations (4.6). The array of constants, which will become

c r = (._T, 13r, -sT, o, Ctj) (4.8)

ct= _ = x_:(0)

13= _ = x_2(0) . (4.9)

_8= - aj_a- _ = x3(0)

which have alreadybeen establishedas constantsof the motion. The
8X ,

_c c = G_where

o13 o_8
8x2 8_2 8x2

8a 213
8X_3 8X3 8X3

8x4 0x4 0x4

• " t

36 8etj

8x2 0x2

8_ Set,

0x

8c

8x_3
Do

0x4

8x3

8{xj

8x4

0a_ 313 3_8 20 8_

0xs 0xs 0xs 0xs 0x5

(4.10)

Noting from Section (3.0) that

X 1 =• = (X+13SC 1 +-8$2C 2

x2=r =13Co+ 8_scl ......

(4.11)
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and from equation (3.5), (4.5) and (4.9)

also

The differential equations become

I IscI Is2c2 0

[0] Ico lsc 1

[0] -lajsc t lco

0r Or 0T

oT oT
m m

where we have used the identity from Appendix B

C 0 = 1 -- 0tJ$2C2

ar''' -I

o_ o_, Ia-" cl

oO__3g
= G_a

a G4

0 otj G_

(4.12)

(4.13)

also, I is the 3 by 3 identity matrix; [0] is the 3 by 3 null matrix; 0 is a column vector with 3 corn-

portents; 0.f is a row vector with 3 components. Equation (4.13) yiel_ the equations

, 0r

__"+ __'scl+ __'s2c2+ cx_ = 0

• Or"

• Ox_3

-__'_,,_,+__'_o+a,-gg:a" =-a_r-__"

_'=r(o.r xF

cxl = 2(-/+ ro x r) • P

where we have restored the original notations for Gl, G2, G3, G4, Gs.
tives,

_r Oc i o 2 _c 2
_ w- 135_ +
O_j 0c_l _os O-_f

Or" . OCo Oc 1

Ox3 Or

OCXj =Cx-r-txj_

where the Stumpff function derivatives are

(4.14)

Now using the partial deriva-

(4.15)

OCo i 2 (4.15a)

Oci 1
- "(ck-i - kc_), k>l

and other Stumpff function identities from Appendix B equation (4.14) can be solved simultaneously,

omitting several algebraic steps to give
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K
m

where gt =

t=___,$CI___IE_'S2C2__Gt_ 2C2 + 21_$3_, 3 + ._.._4 _

= f,Co+ , + [_asc, + 2 - - c lc2)1

= QIxjSCl - I__Co + otj _oLco + 2ot/l_s3i_3 + -_8_o_js c 2

=rto" r xF

=2(-L + r¢oxr) -P

ct(4ctjs 2) as discussed in Appendix B.

(4.16)

In the reference Bond and Gottlieb (1989) the

coefficient of the factor ¢x_a in the differential equation for 13had a secular term. This term does not
appear in equation (4.16). Note that the Laplace vector (ltt_._)has been entirely removed from the formu-
lation. The derivative of the Laplace vector (1__')remains but only as an abbreviation for the perturba-

tions given in equation (4.4a).

4.2 Temporal Elements

Now we apply Lagrange's variation of parameters method to equations (2.18), (2.4) and (4.4). Define

yl=r

Y2 = r'

Y3 = P - _1 r (4.17)

y4=t

y5 = ct.l

Note that ctj is the only element which is common to both the spatial and temporal systems. Now
differentiate equations (4.17) equation (2.18), (2.4), and (4.4) become

Yl =Y2

1
=Y3+r Q "r=y3+g2

= - YsY2 - otjr = - YsY2 + g3 (4.18)y;

Where g z =

=Yl

= ¢x'1=g 5

0 and g4 = O.
r

Equation (4.18) can also be expressed in the form y = f + g

• • % r •

Yz Y2 gl

Y2 Y3 I g2
• I

Y3 = -YsY21 + g3 (4.19)
I

y,Y5 . g5.

where gl, g2, g3, g4, g5 are defined by equation (4.18). The array of constants which will become the
new dependent variables are

_:r = (a, b, y, x, ¢xj) (4.20)

where

a =to =y_(O)
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r

b = ro = Y2(O)

y = _t - txja = y 3(0)

x = to = y4(0)

and _j has already been established as a constant of the motion.

The differential equations for _ (having the form a_-Z__'_ = g ) becomes
w

by1 3yt Oyl by1 Oyl

Oa bb _ Ox Oas

Oy2 Oy2 Oy2 Oy2 Oy2
Oa Ob 3y 3x 3_1

OY3 OY3 OY3 OY3 OY3

Oa Ob _, _ Oaj

_Y4 OY4 OY4 0Y4 0y4

Oa Ob 3), 3x 3_s

Oy5 Oy5 Oy5 Oy5 Oy5
n m

0a 0b _ _ 0aj

but from equations (3.12), (3.13), (3.14), (3.15) and (4.21)

Y l = r = a + bscl + ys2c2

Y2 = r" = bco + ysc 1

Y3 = _t - otjr = T+ otsa - ctar = y+ _j(a - r)

Y,I = t = Z + as + bs2c2 + ],sOc3

y5 = Ot.t

a gl

b' g2

_' = g3
g4i

xj gsI

(4.21)

(4.22)

(4.23)

So we can evaluate the matrix elements in (4.22) to obtain

$c I

0 c o

Equation (4.24) when expanded yields,

Or "

$2C 2 0 -_j

r _ " t"

a

scl O_ b"

Oy_I "

"C

sOc3 1 O [ ,O_j

lJ0 0

• ' 2 ' Or

a +b'scl+ys c2+ul-ff_-al =0

b' , Or' 1
co + _;_c,+ a1-_7 = -;Q . r

b" , , by3
- a.lSCl +yc o +¢X_-j'aj =-raj

gl

g2

= g3

g4

g5

(4.24)

(4.25)
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,3 "c' or" 3t
a's + b 's2c 2 + Y s c3+ + J-_s =0

s

aj=2(-r +r o_xr)e__

Where we have restored the original notations for g2, g3 and gs. We evaluate the partial derivatives in

equations (4.25) using equations (4.23)

3r , 3c 1 2 3c 2

3/ 3Co 3c t (4.26)

3y3 3r

Oai = a - • - a1-bc9

3t 2 3c 2 3 3c 3

where the Stumpff function derivatives are given by equations (4.15a). Equations (4.25) can be solved

simultaneously for the derivatives,

a• 1 • QSC 1 $2C 2 + 2b$3_3 + -_-_¢s c2a---•r_

--r • Qco + _ scl+ bs2_2- Ys3(2_3-clc (4.27)
r-- J

1 s4c"i = lrr- " Qcgscl + a_ - aco + 2bot_s3e3 + _x_ 21

1 ¢xj[a 1.4 2 q_" = --r • Qs2c2 + s3c3 + _0$ c 2 - 2_/s5(c5-4c5r-

As in the development of equations (4.16) the Stumpff function identities of Appendix B have been
used. In the reference Bond and Gottlieb (1989) the coefficient of the factor cxja in the differential

equation for b had a secular term. This term does not appear in equation (4.27).

It is useful to note that

la = Y + ¢xja (4.28)

is an integral of the system of equations (4.27). From equations (4.27) it is easy to show that

y"+ a'a.1 + a o_; = 0 (4.29)

which can be integrated to give

y + a txI = constant (4.30)

By comparison of equation (4.30) to equation (4.21) the constant of integration is the gravitational con-

stant it. Therefore it is not necessary to compute y from its differential equation. We can compute y

from equation (4.28),

y = I.t - otta (4.31)

5.0 Minimization Of Perturbations

The variation of parameters approach is not dependent on the magnitude of the perturbation. No

assumption on the size of the perturbation is required in order that the method be rigorous. However,

275



small perturbations enhance the efficiency, speed, and accuracy of any perturbation method. In the
method described in this paper, the embedding of the Jacobi integral has the effect of introducing a per-
turbation parameter/co/that is the rotational speed of the planet, or the mean motion of the perturbing
third body. To prevent this perturbation from becoming too large the following modification is offered:

Let,

cr= oo + AO (5.1)

where6° istheinitialvalueofa and A6 isthechangeinc_.Ineffectwe can letAc_replaceo so that

thedifferentialequationsreflectonlychangesina. Substituteequation(5.1)intoequation(2.17)to
obtain

#

r + o_lr = - !_ + r2F + 2(00 + A_ - V_, t))r

Now since Oo is constant we can move it to the left side of this differential equation to get

_ + (at- 2_o)r= - _ + r2F + 2(ACt V(£,t))_r (5.2)

Similarlyequation(2.18)becomes

r" + (O_j - 2_o)r = I.t + rr_ • F + 2(Ao" - V(:_, t))r (5.3)

This change does not affect the outcome of the variation of parameters approach taken here. This
change is only a computational convenience and is in effect in the computational procedure of Section
6.1 where the element ct,r is actually c9 - 260 and o is actually Aa. Note that the initial value of A6
is

AO = 0 (5.4)

6.0 Application

In this section the most important equations are collected and listed in a logical order suitable for com-
putation. Also two numerical examples are presented,

6.1 Computational Procedure

Given _, _, to find r(t) and v(t).

STEP 1 Initialization

s=0

ro = G, "_)la

a=ro

b =_ .v_.o

"C= to

Ct= r_o

__=a v_,

Evaluate Perturbations Vo,

vo .v_ -2 V_
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7= B- aj a

- ro

ff=O

STEP 2 Transform Elements to Coordinates

_ = __+ _.sci + S_s2c2
+

, = _:o + _ci

x3= mj_-r)+8

+=[t-aj a

• = a + bscl + _'2C 2

V =r'lr
t

• =bco +Tscl

t =f+a$ +b$2c2+Y$3c 3

STEP 3 Evaluate Differential Equations For The Elements

8V
F=P -_

Jr
w

12 =r2F + 2r_(-V+ 0')

as = 2( r' -' - +roxr).P_

= 2(E"_)r- _. _r)r'w_../)_r

=l' • 2 +2l_s3tr3+
a_= - p,sc,- _s2c_- _j _ c2 2_osc2]

' - -_'---- QC o + J._SC! + j C 1 + _S2_2 _$3(2_ 3 C1C

8_" O.ajscx - ge_Co+ _Co + 2aj_.s_3 + 2 8als c2

t

¢_= r e3 . r x F

a' l r "Qsc l - I + t
------ Otj a$2c2 2bs3_3 + 1 4 2r- _-_s c2

b'= l-rr•Q.co+ a'._[ascl+bs2_2-Vs3(2[,-clcz)]

Ir .Qa_sc; + aj - aco+ 2bajs3_3+ -_?alsc2]"�=v-

'[as 1-4 2 )]"(= lrr- " Q*$2c2 + O&j 3c 3 + "_-05 C 2 -- 2V$5(C5"-4_5

STEP 4 Numerically Integrate Over As To Obtain Elements At s + As

(optional)
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STEP 5

S =S +_S

Go back to step 2.

6.2 Numerical Applications

The equations of the BG14 _8element method given above in Section 6.1 were programmed as nearly as
possible in the same format as the older BG14 e method (Bond and Gottlieb, 1989). The two methods
were then compared to reference cases. The RI{45 numerical method ('Fehiberg, 1969) was used as the

numerical integration method in both examples.

6.2.1 Example 1

The first example is that of a highly eccentric (e = 0.95) orbit about the Earth. The orbit is subject to

the J2 (Earth oblateness) perturbing potential, which is conservative, plus lunar perturbations. This

orbit was computed by both BG14 _5and BG14 e. methods. This example was also computed by Stiefel

and Scheifele (1971) with exlxemely high precision and will be used as the reference. Table I shows

the components of the position vector in Cartesian coordinates as computed by each method after 50

revolutions of the satellite. It is seen that both methods compare very closely with the reference but the

new BG14 _8method being slightly closer to the reference.

The problem description for the first example is:

Coordinate system: X and Y fixed in Earth equatorial plane; Z perpendicular to Earth equatorial plane.

Initial conditions:

Initial State Vector

Position I 0.0 -5888.9727 -3400.0 km

Velocity I 10.691338 0.0 0.0 km/sec

The time of comparison is at 288.12768941 days, after approximately 50 revolutions.

TABLE I - Comparison of BG14 8 and BG14 E Methods
Final Value Of Position Vector

Method X (kin) Y (km) Z (kin) Steps/Rev

(Avg)

REFERENCE -24219.0503 227962.1064 129753.4424 500

Stiefel and Sheifele (1971)

BG14 (RK45 Fixed Step) -24218.8175 227961.9146 129753.3431 62
Method

BG14 (RK45 Fixed Step) -24218.8069 ' 227961.9186 129753.3344 62
Method

The Earth oblateness and lunar models used are somewhat idealized and are taken from Stiefel and

Scheifele (1971). These models are specified as follows:

The Earth oblateness perturbations were compared from the potential model

v = 7 7 -
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where

GE = 398601 km3/sec 2 (gravitational constant of Earth)

a, = 6371.22 km (equatorial radius of Earth)

J2 = 1.08265 x 10-3 (second harmonic of geopotential)

The lunar perturbation was computed from

P=-GM[ r-a _1- /r - a: +

and the lunar ephemeris is approximated by

as = p sin Dt

,8
ay =-_pcosDt

1
a, = - _- p cos Dt

p = 384400 km (the Earth-Moon distance)

= 2.665315780887 x 10_ rad/sec (Moon orbital rate)

GM = 4902.66 km3/sec 2 (gravitational constant of Moon)

6.2.2 Example 2

The second example (Adamo, 1989) is that of a near circular geocentric satellite orbit numerically

integrated by the BG14 _8method from an initial altitude of 300 km down to entry interface altitude of
123.278 km (66.565 nautical miles). The perturbations considered were the Jacchia 1970 atmospheric

model and the GEM-10 (Lerch, 1979) geopotential restricted to second order and degree. The time of

flight was about 29.736111 days and the ballistic number was 78.606675 kg/m 2. This case failed at an

altitude of approximately 135 km (72.894 nautical miles) with the older BG14 e method.

Coordinate System: True Equator and Greenwich Meridian Of Epoch

Initial conditions:

Initial State Vector at UTI = 0 on 3 September 1991. ]

P°siti°n I 6677832"962 I-62810"44513 I "27301'63472 I m IVelocity 78.98607579 6821.102_837 3626.863958 m/sec

TABLE II - Comparison of BG14 8 and BG14 e_.Methods
Final Value Of Position Vector

Method X (m) Y (m) Z (m) Steps/Rev

(Avg)

BGI4 (RK45 Variable Step) 2664837.2 -5838760.8 1033865.4 29
8 Method

BG14 (RK45 Variable Step) FAILED FAILED FAILED
e Method

o,

Additional stress cases (not shown) have been computed in which the solution was propagated down to

the surface of the Earth (assuming no change in atmospheric density below 90 kin).
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7.0 Final Comments

Recent numerical studies on atmospheric entry from near circular orbits and on low thrust in near circu-

lar orbits exhibit numerical instability when solved by the method of Bond and Gottlieb (1989) for long

time intervals. These two cases are similar since both have persistent, tangential, non-conservative per-

turbations. It was found that this instability was due to secular terms which appear on the right hand

sides of the differential equations of some of the elements. In this paper this instability is removed by

the introduction of another vector integral of the motion and another scalar integral which remove the

secular terms. The introduction of these new integrals require a new derivation of the differential equa-

tions for most of the elements. For this rederivation the Lagrange method of variation of parameters is
used making the development more concise.
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AppendixA - TheVariationOfParametersMethodOfLagrange

Assumethatwehaveamechanicalsystemgivenby

x_=£(x,t)

where

and t is the independent variable.

x r = (xl, ' • • ,xn)
m

[r = q'l,' "":.)

(A1)

We also assume that the solution of the system of equations (A1) is possible and can be

expressed

x = x (.9., t) (A2)

where the integration constants, or parameters, are given by

cr = (CI,""",Cn) (A3)

Now consideranothersystem similartothesystem (AI),

x_"=f_, t) + g_, t) (A4)

where the new term is called a perturbation and is given by

gr_, t) = (gl,""" ,gn) (A5)

The objective is to make the solution, equation (A2) of the system (A1), valid for the perturbed

system (A4) by allowing the parameter c to be a function of the independent variable. In other
words the solution (A2) still applies but with the constant _) replaced by the function (c(t)).
So we have

x = x(f_(t), t) (A6)

Now lake the total derivative of equation (A6)

3x. Ox (A7)
+ D--7

Also takethe totalderivativeof (A2) and use (At) toobtain

O_._x= j = f _, t) (A8)
Ot -

Note we have used the fact that for unperturbed case the total and partial derivatives of x are the
bx

same. Using equation (A8) we can eliminate the partial derivative -_- from equation (A7)

obtaining,

_x.
x_"= _c c + _ (.x_,t) (A9)

Now compare equation (A9) with equation (A4) to obtain

_x " + [._., t) = [._, t) + g_, t)= Tcc

Afterthe obviouscancellation

3x. (At0)
-_cc = g

_x

where the matrix _c isobtainedfrom the solution,equation(A2). The matrixmust be inverti-

ble. That is
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Thesystemof differential equations for the parameter c is therefore

(A ll)
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AppendixB - TheStumpffFunctions

These functions are related to the Irigonomelric and hyperbolic functions. The general equation

for the n th Stumpff function is,

= ._(- 1)k zkc.(z) (2k + n)l ' n=0.1.2 .... 031)

When these series are compared to the series of the trigonometric and hyperbolic functions, the

following relations exist:

co(xz) = cos x , or co(-x 2) = cosh x

cl(xZ) = _sin x , or cl(-x 2) - sinh x
X X

c2(x2) _ 1 - cos x cosh x- 1
x2 , or c2(-x 2)- x2

c3(x2) = x - sin x sinh x - x
x3 , or c3(-x 2) = x3

c4(x2) = x4 , or c4(-x 2) = x4

032)

etc.

The following identities may also be easily verified:

co(z) 2 + zcl(z) 2 = 1

Co(Z)2 - ZCx(Z)2 = co(4z)

Co(Z) 2 = 1 - 2zc2(4z)

c l(z) = 2c 2(4z )

Co(Z)cl(z) = c1(4z)

c2(z) = cl(z) 2- c2(Z)Co(Z)

The more general identities

and

are also valid.

c..= c(z,. c.)l.>o.
1

c.(z) + zc.+2(z) -
n!

033)

034)

035)

The derivatives of these functions may be expressed as

2z dc,,(z) = c.-1(z) _ nc.(z) , n>0
dz

and

dc. (z) 1
= _[nc.,2(z)- c.+l(z)]

A convenient integration formula is

_skck (ps2)ds = Sk+_ck+I(PS_3

036)

037)

038)
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